A Theorem on Convex Bodies of the Brunn-Minkowski Type

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theorem on Convex Bodies of the Brunn-Minkowski Type.

* This work was supported by grants from Anheuser-Busch, Inc., American Cancer Society, and the U. S. Public Health Service. Leibowitz, J., and Hestrin, S., Advances in Enzymol., 5, 87-127 (1945). Lindegren, Carl C., Spiegelman, S., and Lindegren, Gertrude, PRoc. NAT. AcAD. Sci., 30, 346-352 (1944). Lindegren, Carl C., and Lindegren, Gertrude, Cold Spring Harbor Symposia Quant. Biol., 11, 115-1...

متن کامل

Some new Brunn-Minkowski-type inequalities in convex bodies

The Brunn-Minkowski inequality theory plays an important role in a number of mathematical disciplines such as measure theory, crystallography, optimal control theory, functional analysis, and geometric convexity. It has many useful applications in combinatorics, stochastic geometry, and mathematical economics. In recent years, several authors including Ball [1, 2, 3], Bourgain and Lindenstrauss...

متن کامل

On the Equality Conditions of the Brunn-minkowski Theorem

This article describes a new proof of the equality condition for the Brunn-Minkowski inequality. The Brunn-Minkowski Theorem asserts that, for compact convex sets K,L ⊆ Rn, the n-th root of the Euclidean volume Vn is concave with respect to Minkowski combinations; that is, for λ ∈ [0, 1], Vn((1− λ)K + λL) ≥ (1− λ)Vn(K) + λVn(L). The equality condition asserts that if K and L both have positive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1949

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.35.1.27